Description
Machine Learning:
Supervised/Unsupervised learning, Classification, Clustering, Association Detection, Anomaly Detection, Dimensionality Reduction, Regression.
Naive Bayes, K-nearest neighbours, Support Vector Machines, Artificial Neural Networks, K-means, Hierarchical clustering, Principal Components Analysis, Linear regression, Logistics regression, Random variables, Bayes theorem, Bias-variance tradeoff.
Natural Language Processing with Python:
Corpora, stopwords, sentence and word parsing, auto-summarization, sentiment analysis (as a special case of classification), TF-IDF, Document Distance, Text summarization, Text classification with Naive Bayes and K-Nearest Neighbours and Clustering with K-Means.
Sentiment Analysis:
Why it’s useful, Approaches to solving — Rule-Based , ML-Based , Training , Feature Extraction, Sentiment Lexicons, Regular Expressions, Twitter API, Sentiment Analysis of Tweets with Python.
Mitigating Overfitting with Ensemble Learning:
Decision trees and decision tree learning, Overfitting in decision trees, Techniques to mitigate overfitting (cross validation, regularization), Ensemble learning and Random forests.
Recommendations: Content based filtering, Collaborative filtering and Association Rules learning.
Get started with Deep learning: Apply Multi-layer perceptrons to the MNIST Digit recognition problem.